metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jaime Vázquez,^a Sylvain Bernès,^b* Guadalupe Hernández,^a Hilda Aguilar^a and René Gutiérrez^a

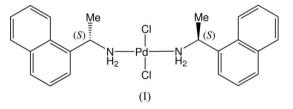
^aLaboratorio de Síntesis de Complejos, Facultad de Ciencias Químicas, Universidad Autónoma de Puebla, AP 1067, 72001 Puebla, Pue., Mexico, and ^bCentro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, AP 1613, 72000 Puebla, Pue., Mexico

Correspondence e-mail: sylvain_bernes@Hotmail.com

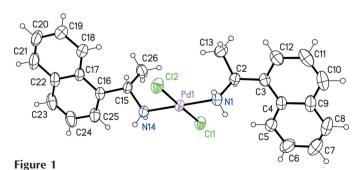
Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(\text{C}-\text{C}) = 0.005 \text{ Å}$ R factor = 0.028 wR factor = 0.075 Data-to-parameter ratio = 21.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.


trans-Dichlorobis[(S)-(–)-1-(1-naphthyl)ethylamine]palladium(II)

The title complex, $[PdCl_2(C_{12}H_{13}N_2)_2]$, has two amine ligands coordinated in such a way that the naphthyl and methyl groups are located in the same hemisphere with respect to the $[PdN_2Cl_2]$ coordination plane. This configuration allows for the formation of dimers in the solid state with a metal-metal separation of 3.2499 (4) Å.


Received 1 December 2005 Accepted 8 December 2005 Online 15 February 2006

Comment

The use and applications of chiral complexes of transition metals have experienced an exponential growth in recent years (*e.g.* Maire *et al.*, 2005). In this connection, N-containing ligands are generally preferred to their P analogues, since they present a number of advantages such as accessibility and easy recovery. In relation to this field, our interest has recently focused on new chiral Pd^{II} complexes derived from optically pure α -diimines (Martínez-García *et al.*, 2000; Peláez *et al.*, 2004) and, in particular, on the synthesis of new Pd^{II} complexes with optically pure α -diimines (Vázquez-García *et al.*, 2000). Almost invariably, these syntheses afford by-products, arising from ligand decomposition or rearrangement. The title complex, (I), is one such by-product that we have characterized by X-ray analysis.

The asymmetric unit (Fig. 1) contains one complex in a general position, with the central Pd^{II} having the expected square planar geometry (Table 1). The amine ligands are *trans* coordinated to a $PdCl_2$ core, and arranged in a *gauche*

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

The structure of (I), with displacement ellipsoids at the 50% probability level for non-H atoms.

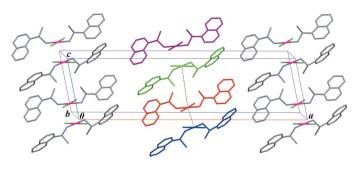
 $D_x = 1.518 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 94 reflections $\theta = 4.7-13.6^{\circ}$ $\mu = 1.06 \text{ mm}^{-1}$ T = 296 (1) KPlate, orange

 $0.50 \times 0.20 \times 0.08 \text{ mm}$

 $R_{\rm int} = 0.021$

 $\theta_{\rm max} = 30.0^{\circ}$

 $h = -49 \rightarrow 1$


 $k = -9 \rightarrow 6$

 $l = -13 \rightarrow 13$

2 standard reflections

every 48 reflections

intensity decay: 1%

Figure 2

Part of the crystal structure of (I) viewed down the *b* axis, showing Pd···Pd short and long interactions in the central stack (dashed lines). Symmetry codes for this stack: red molecule: asymmetric unit; blue molecule: 1 - x, y, -z; green molecule: 1 - x, y, 1 - z; purple molecule: x, y, 1 + z. H atoms have been omitted.

conformation, as described by the torsion angle $C2-N1-N14-C15 = -57.1 (2)^{\circ}$. The naphthyl and methyl groups are thus both located in the same hemisphere with respect to the coordination plane $[PdN_2Cl_2]$, a situation rarely observed for *trans*- $[Pd(amine)_2Cl_2]$ complexes, which usually crystallize with the metal centre on a special position. However, a configuration similar to that observed in (I) was previously reported in closely related chiral complexes with (R)-(+)-bornylamine (Abu-Surrah *et al.*, 2002), (1*S*,2*S*,3*S*,5*R*)-(+)-isopinocampheylamine (Vázquez *et al.*, 2005) and an L-alanine derivative (Steiner *et al.*, 1988) as the amine ligands.

In spite of the C_1 symmetry, molecules of (I) are well packed in the solid state, without inclusion of solvent. The conformation described above for the amine ligands allows for the formation of a short Pd1···Pd1ⁱ contact of 3.2499 (4) Å [symmetry code: (i) 1 - x, y, -z], virtually equal to the sum of the van der Waals radii, 3.26 Å (Bondi, 1964). The dimers are separated by a long $Pd1 \cdots Pd1^{iv}$ distance, 6.4931 (5) Å [symmetry code: (iv) 1 - x, y, 1 - z]. The short-long separations alternate, forming a stack along the [001] axis (Fig. 2). No significant π - π interactions are observed between symmetry-related naphthyl rings. For instance, the dihedral angle between ring systems C3-C12 and C16-C25 belonging to two molecules within a dimer is 59.02 (6) $^{\circ}$. The shortest C- $H \cdots \pi$ contact within this dimer is $C6 - H6A \cdots Cg1^{i}$, with a separation H6A... $Cg1^{i}$ of 2.78 Å (Cg1 is the centroid of ring C16/C17/C22-C25). Finally, weak N-H···Cl hydrogen bonds involving all Cl and amine H atoms (Table 2), link the molecules into chains along the short cell axis [010].

Experimental

A solution of *N,N'*-bis[(*S*)-(-)-1-(1-ethylnaphthyl)]propanediimine (0.13 g, 0.35 mmol) in benzene (20 ml) was treated with (COD)PdCl₂ (0.1 g., 0.35 mmol) with stirring at 298 K for 2 h. The yellow precipitate was filtered and the resulting solution was slowly evaporated. After a few days, orange crystals of (I) were collected. Yield 15%; m.p. 501–503 K. Analysis: $[\alpha]_D^{25} = -27.5$ (c 1, CHCl₃). ¹H NMR (400 MHz, CDCl₃, p.p.m.): δ 1.50 (*d*, 3H, Me), 1.60 (broad *s*, 2H, NH₂), 4.88 (*c*, 1H, methine), 7.40–8.10 (*m*, 7H, naphthyl); ¹³C NMR (100.6 MHz, CDCl₃, p.p.m.): δ 24.27 (1C, Me), 46.27 (1C, methine), 120.98–142.92 (10C, naphthyl).

Crystal data

$[PdCl_2(C_{12}H_{13}N_2)_2]$
$M_r = 519.77$
Monoclinic, C2
a = 35.310(3) Å
b = 6.7996 (7) Å
c = 9.7193 (7) Å
$\beta = 102.893 (4)^{\circ}$ V = 2274.7 (3) Å ³
V = 2274.7 (3) Å ³
Z = 4

Data collection

Bruker P4 diffractometer ω scans Absorption correction: ψ scan (XSCANS; Siemens, 1996) $T_{min} = 0.566, T_{max} = 0.920$ 6025 measured reflections 5769 independent reflections 5658 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0504P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.028$	+ 0.3281P]
$wR(F^2) = 0.075$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.003$
5769 reflections	$\Delta \rho_{\rm max} = 0.36 \text{ e} \text{ Å}^{-3}$
274 parameters	$\Delta \rho_{\rm min} = -1.02 \text{ e} \text{ Å}^{-3}$
H atoms treated by a mixture of	Absolute structure: Flack (1983),
independent and constrained	2217 Friedel pairs
refinement	Flack parameter: -0.01 (2)

Table 1

Selected geometric parameters (Å, °).

Pd1-N1 Pd1-N14	2.061 (2) 2.071 (2)	Pd1 - Cl1 $Pd1 \cdot \cdot \cdot Pd1^{i}$	2.3099 (8) 3.2499 (4)
Pd1-Cl2	2.2947 (8)	Turviu	5.2499 (4)
N1-Pd1-N14	179.70 (14)	N1-Pd1-Cl1	90.78 (9)
N1-Pd1-Cl2	88.64 (7)	N14-Pd1-Cl1	89.50 (8)
N14-Pd1-Cl2	91.08 (9)	Cl2-Pd1-Cl1	178.81 (4)

Symmetry code: (i) -x + 1, y, -z.

Table 2Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.87 (2) 0.83 (2) 0.85 (2)	2.89 (3) 2.83 (3) 2.60 (3)	3.700 (3) 3.339 (2) 3.330 (2)	156 (4) 121 (3) 145 (3)
0.86(2)	2.86 (2)	3.702 (3)	168 (4)
	0.87 (2) 0.83 (2)	0.87 (2) 2.89 (3) 0.83 (2) 2.83 (3) 0.85 (2) 2.60 (3)	0.87 (2) 2.89 (3) 3.700 (3) 0.83 (2) 2.83 (3) 3.339 (2) 0.85 (2) 2.60 (3) 3.330 (2)

Symmetry codes: (i) -x + 1, y, -z; (ii) x, y + 1, z; (iii) x, y - 1, z.

H atoms bonded to C atoms were placed in idealized positions and refined with a riding model approximation [C-H = 0.93 Å for aromatic CH, 0.96 Å for methyl CH₃ and 0.98 Å for methine CH; $U_{iso}(H) = 1.2U_{eq}(\text{carrier C atom})$ for aromatic and methine CH; $U_{iso}(H) = 1.5U_{eq}(\text{carrier C atom})$ for methyl CH₃]. H atoms bonded to N atoms were found in a difference map and their positions refined with an N-H distance restrained to 0.85 (2) Å and $U_{iso} = 1.5$ $U_{eq}(\text{carrier N atom})$. The deepest hole is located 0.59 Å from atom Pd1.

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve

structure: *SHELXTL-Plus* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL-Plus*; molecular graphics: *SHELXTL-Plus*; software used to prepare material for publication: *SHELXTL-Plus*.

Partial support from CONACyT (project 34591-E) and Secretaría de Educación Pública, Subsecretaría de Educación Superior e Investigación Científica, Dirección General de Educación Superior (grant 2003-21-001-023, VIEP-UAP: II37G02), is acknowledged.

References

Abu-Surrah, A. S., Al-Allaf, T. A. K., Rashan, L. J., Klinga, M. & Leskelä, M. (2002). Eur. J. Med. Chem. 37, 919–922. Bondi, A. (1964). J. Phys. Chem. 68, 441-451.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Maire, P., Breher, F., Schönberg, H. & Grützmacher, H. (2005). Organometallics, 24, 3207–3218.
- Martínez-García, M., Klimova, E., Vázquez-García, R. A. & Gutiérrez-Pérez, R. (2000). *Rev. Mex. Fis.* **46** (S2), 126–131. (In Spanish.)
- Peláez, M. A., Ramírez, T., Martínez, M., Sharma, P., Álvarez, C. & Gutiérrez, R. (2004). Z. Anorg. Allg. Chem. 39, 1489–1494.
- Sheldrick, G. M. (1998). SHELXTL-Plus. Release 5.10. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). XSCANS. Version 2.21. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Steiner, N., Nagel, U. & Beck, W. (1988). Z. Naturforsch. Teil B, 43, 1453-1460.
- Vázquez, J., Bernès, S., Meléndrez, R., Portillo, R. & Gutiérrez, R. (2005). Acta Cryst. C61, m424–m427.
- Vázquez-García, R., Gutiérrez-Pérez, R., Klimova, E. & Martínez-García, M. (2000). *Rev. Latinoam. Quim.* 28, 43–48. (In Spanish.)